UNCLASSIFIED

Defense Technical Information Center Compilation Part Notice

ADP012267

TITLE: Exchange Coupling and Spin-Flip Transition of CoFe2O4/alpha-Fe2O3 Bilayered Films

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Applications of Ferromagnetic and Optical Materials, Storage and Magnetoelectronics: Symposia Held in San Francisco, California, U.S.A. on April 16-20, 2001

To order the complete compilation report, use: ADA402512

The component part is provided here to allow users access to individually authored sections of proceedings, annals, symposia, etc. However, the component should be considered within the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:

ADP012260 thru ADP012329

UNCLASSIFIED

EXCHANGE COUPLING AND SPIN-FLIP TRANSITION OF CoFe₂O₄/α-Fe₂O₃ BILAYERED FILMS

Tatsuo Fujii, Takuya Yano, Makoto Nakanishi and Jun TakadaDepartment of Applied Chemistry, Faculty of Engineering, Okayama University, Tsushima-naka 3-1-1, Okayama 700-8530, Japan

ABSTRACT

CoFe₂O₄/ α -Fe₂O₃ (ferrimagnetic / antiferromagnetic) bilayered films were prepared on α -Al₂O₃(102) single-crystalline substrates by helicon plasma sputtering. A well-crystallized epitaxial α -Fe₂O₃(102) layer was formed on the substrate, while CoFe₂O₄ grown on α -Fe₂O₃ (102) was a polycrystalline layer with a (100)-preferred orientation. The α -Fe₂O₃(102) films without CoFe₂O₄ layers clearly showed a spin-flip transition at about 400 K. The spins aligned perpendicular to the film plane at room temperature changed their direction within the film plane above 400 K. However the α -Fe₂O₃ base layers of CoFe₂O₄/ α -Fe₂O₃ bilayered films did not show any spin-flip transition. The CoFe₂O₄ layer on α -Fe₂O₃ had a large in-plane magnetic anisotropy, while the spin axis of the α -Fe₂O₃ (102) base layer was directed perpendicular to the film plane. The magnetization of ferrimagnetic CoFe₂O₄ layers was coupled perpendicularly to the spin axis of antiferromagnetic α -Fe₂O₃ layers due to the exchange coupling at the interface between CoFe₂O₄ and α -Fe₂O₃.

INTRODUCTION

Exchange coupling at an interface between ferromagnetic (FM) and antiferromagnetic (AFM) layers has received much attention mainly due to the technological applications in such devices as spin-valve sensors. It stabilizes a magnetic direction of the FM layer and functions as a bias field in the magnetic hysteresis loop. Recently, full micromagnetic calculations suggested the existence of the 90° FM - AFM coupling at the interface [1]. However the fundamental origin of exchange coupling between magnetic materials, especially magnetic oxide materials, is still unclear. $\alpha\text{-Fe}_2\text{O}_3$ is one of candidates for the AFM materials fabricated in the spin-valve sensors [2,3]. The spin valves partly consisting of $\alpha\text{-Fe}_2\text{O}_3$ have high thermal stability and large magneto-resistance ratio. By the way, one of the present authors found that epitaxial $\alpha\text{-Fe}_2\text{O}_3$ (102) films on $\alpha\text{-Al}_2\text{O}_3(102)$ had an unique spin-flip transition [4]. The transition takes place at about 400 K, much higher than the Morin transition temperature (260 K) of the bulk crystal. The spin axis lying within a film plane above 400 K turns perpendicular to the film plane below the transition temperature.

There are a few studies on the exchange coupling between oxide materials with the FM/AFM bilayered structure [5]. Most of practical FM oxides are exactly ferrimagnetic. Microscopic spin configurations at the interface between oxide systems could be different from the ones between metallic systems. We prepared well-crystallized $\alpha\text{-Fe}_2O_3$ and CoFe_2O_4 bilayered films by using helicon plasma sputtering technique [6]. CoFe_2O_4 is a typical ferrimagnetic material with an inverse spinel structure. Structural properties and magnetic interactions between ferrimagnetic CoFe_2O_4 (FM) and $\alpha\text{-Fe}_2O_3$ (AFM) layers were discussed. If the exchange coupling at the $\text{CoFe}_2O_4/\alpha\text{-Fe}_2O_3$ interface was strong enough, magnetic properties of the CoFe_2O_4 layer should be influenced by the spin-flip transition of the $\alpha\text{-Fe}_2O_3$ layer or vice versa.

EXPERIMENT

Helicon plasma sputtering is a powerful technique to prepare high-quality multilayered films with sharp interfaces [7]. It has some advantages in comparison with conventional rf magnetron sputtering, such as high deposition rate stability and low plasma damage to the film surface. A helicon plasma cathode consists of a conventional rf magnetron cathode and a rf coil for a helicon wave. Fig.1 shows a schematic drawing of the helicon plasma sputtering system we used. Two targets for helicon cathodes were made of sintered α -Fe₂O₃ and CoO, respectively. The base pressure of the system was 10^{-7} Pa. Before sputter deposition an α -Al₂O₃(102) substrate was annealed in vacuum at about 973 K for 1 hour in order to obtain a clean and well-ordered surface. α -Fe₂O₃ base layers with the thickness of 100 nm were sputtered on the substrate at the substrate temperature of 673 K. CoFe₂O₄ layers with several thicknesses ranging from 25 to 200 nm were then deposited on α -Fe₂O₃ at 773 K by simultaneous sputtering from both targets, to control the deposition rate ratio between α -Fe₂O₃ and CoO. The deposited films were characterized by reflection high energy electron diffraction (RHEED), x-ray diffraction (XRD), scanning probe microscopy (SPM), vibrating sample magnetometer (VSM), conversion electron Mössbauer spectroscopy (CEMS), and energy dispersive X-ray spectroscopy (EDS).

RESULTS AND DISCUSSION

Typical XRD and RHEED patterns of α -Fe₂O₃ films deposited on α -Al₂O₃ (102) single-crystalline substrates are shown in figs. 2(a) and (b), respectively. Epitaxial relationship between the α -Fe₂O₃ layer and the α -Al₂O₃ substrate can clearly be seen in both XRD and RHHED patterns. The XRD pattern had only a reflection from the film indexed as α -Fe₂O₃(204) at the side of an intense α -Al₂O₃ (204) reflection. The sharp streak lines in the RHEED pattern indicated an atomically flat surface of the layer. Both α -Fe₂O₃ and α -Al₂O₃ have a corundum structure with a small lattice misfit of +5.8 %. This could be a reason why the well-crystallized and atomically flat α -Fe₂O₃ layers were epitaxially formed on the α -Al₂O₃ substrates.

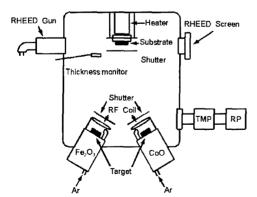
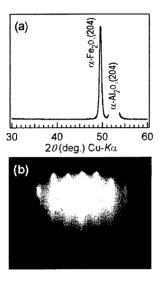



Figure 1. Schematic drawing of helicon plasma sputtering system we used. The helicon cathodes consist of conventional rf magnetron cathodes and rf coils.

Figure 2. (a) XRD and (b) RHEED patterns of an α -Fe₂O₃ film deposited on an α -Al₂O₃ (102) substrate.

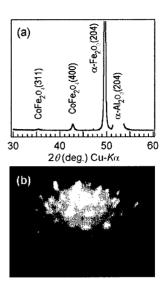
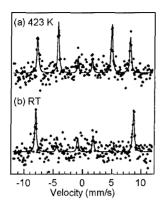



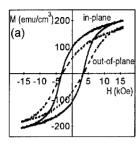
Figure 3. (a) XRD and (b) RHEED patterns of a $CoFe_2O_4/\alpha \cdot Fe_2O_3$ bilayered film deposited on an $\alpha \cdot Al_2O_3$ (102) substrate. Thicknesses of the $CoFe_2O_4$ and the $\alpha \cdot Fe_2O_3$ layers were 200 and 100 nm. respectively.

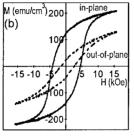
Figs. 3(a) and (b) are typical XRD and RHEED patterns of $CoFe_2O_4/Fe_2O_3$ bilayered films, respectively. The XRD pattern of the $CoFe_2O_4/Fe_2O_3$ bilayered film had two reflections from the $CoFe_2O_4$ layer indexed as $CoFe_2O_4(311)$ and (400) in addition to the reflection from the α -Fe $_2O_3$ (204) base layer. The relative peak intensity ratio of $CoFe_2O_4(400)$ to (311) was considerably large, in comparison with that of the $CoFe_2O_4$ bulk pattern with random orientation [8]. The $CoFe_2O_4$ layer formed on α -Fe $_2O_3(102)$ had strong (100)-preferred orientation. In crystallographic aspects, the α -Fe $_2O_3(102)$ surface has a pseudo-square structure though the α -Fe $_2O_3$ crystal has hexagonal corundum structure. The $CoFe_2O_4(100)$ layer with cubic spinel structure could be formed on the α -Fe $_2O_3(102)$ base layer. However the lattice misfit between them is very large, about -17%. The RHEED pattern of $CoFe_2O_4$ on α -Fe $_2O_3(102)$ was spotted and complicated. The $CoFe_2O_4$ layers in bilayered films were poly-crystallized and had (100)-preferred orientation. Moreover, chemical formula of the $CoFe_2O_4$ layer analyzed by EDS was $Co_{0.7}Fe_{2.3}O_4$.

The spin direction of α -Fe₂O₃ layers on α -Al₂O₃(102) was easily determined by CEMS. The CEMS spectrum of α -Fe₂O₃ generally exhibited six lines due to the nuclear Zeeman splitting from a large internal magnetic field. Relative peak intensity ratio of the sextet is expressed theoretically as a function of an angle (θ) between the γ -ray direction and the spin direction

$$3: \frac{4\sin^2\theta}{1+\cos^2\theta}: 1: 1: \frac{4\sin^2\theta}{1+\cos^2\theta}: 3.$$

Figure 4. CEMS spectra of an α -Fe₂O₃(102) film deposited on α -Al₂O₃ (102) measured at (a) 423 K and (b) room temperature.


Figure 5. CEMS spectra of a $CoFe_2O_4/\alpha \cdot Fe_2O_3$ bilayered film on $\alpha \cdot Al_2O_3$ (102), measured at (a) 523 K, (b) 423 K, and (c) room temperature. Thicknesses of the $CoFe_2O_4$ and $\alpha \cdot Fe_2O_3$ layers were 25 and 100 nm, respectively.


CEMS spectra of an α -Fe₂O₃(102) film without a CoFe₂O₄ covering layer are shown in fig. 4 as a function of the temperature. The spectra had the intensity ratio of nearly 3:0:1:1:0:3 at 300 K and 3:4:1:1:4:3 at 423 K. The spin axis of the α -Fe₂O₃ (102) film was abruptly changed from the perpendicular direction (θ =0°) to the in-plane direction (θ =90°) at about 400 K.

Besides the intensity ratio of the CEMS spectra of the $CoFe_2O_4/\alpha$ - $Fe_2O_3(102)$ bilayered film did not show any temperature dependence, even when the α - $Fe_2O_3(102)$ layer was covered by a very thin, 25 nm-thick, $CoFe_2O_4$ layer. All spectra of the α - $Fe_2O_3(102)$ base layer had the intensity ratio of about 3:0:1:1:0:3 as shown in fig. 5. The α - Fe_2O_3 layer covered by $CoFe_2O_4$ did not show the spin-flip transition. The spin direction in α - Fe_2O_3 was fixed perpendicular to the film plane over the all temperatures.

In-plane and out-of-plane magnetization curves of the $CoFe_2O_4/\alpha$ - Fe_2O_3 bilayered films were also measured at various temperatures. Figs. 6(a) and (b) show room temperature magnetization curves of the 200 nm-thick $CoFe_2O_4$ films without and with the α - Fe_2O_3 (102) base layers, respectively. No uniaxial magnetic anisotropy nor exchange bias field was induced in the $CoFe_2O_4$ layers, when they did not have the α - Fe_2O_3 base layers. $CoFe_2O_4$ is known to have a large magnetocrystalline anisotropy along the <100> direction [8]. The (100)-oriented $CoFe_2O_4$ layers could have domain structures magnetized along the in-plane [100] and [010] and the out-of-plane [001] directions. The large coercivity was, thus, observed in both in-plane and out-of-plane hysteresis loops.

On the other hands, the $CoFe_2O_4$ layers deposited on the α -Fe₂O₃(102) base layers had a large in-plane magnetic anisotropy. The exchange bias field of about 200 Oe was induced. The spin

Figure 6. In-plane and out-of-plane magnetization curves of (a) a 200 nm-thick $CoFe_2O_4$ film deposited on α - Al_2O_3 (102), and (b) a $CoFe_2O_4$ (200 nm) α - Fe_2O_3 (100 nm) bilayered film on α - Al_2O_3 (102). The magnetization curves were measured at room temperature

axis of the α -Fe₂O₃ base layers was directed perpendicular to the film plane as discussed above. The magnetization of the CoFe₂O₄ (FM) layers was exactly coupled perpendicularly to the spin axis of the α -Fe₂O₃ (AFM) layers. The 90° FM-AFM coupling observed in CoFe₂O₄/ α -Fe₂O₃ bilayered films was in good agreement with the theoretical result reported by Koon [1]. The large in-plane anisotropy of the CoFe₂O₄ layers was probably induced by the 90° coupling with the α -Fe₂O₃ layers and it should suppress the spin-flip transition of the α -Fe₂O₃ layers irreversibly.

SUMMARY

Exchange coupling between a ferrimagnetic $CoFe_2O_4$ layer and an anitiferromagnetic $\alpha\text{-Fe}_2O_3$ layer was examined to prepare $CoFe_2O_4/\alpha\text{-Fe}_2O_3$ bilayered films. (100)-oriented $CoFe_2O_4$ layers were formed on well-crystallized epitaxial $\alpha\text{-Fe}_2O_3(102)$ layers deposited on $\alpha\text{-Al}_2O_3(102)$ single-crystalline substrates. The $\alpha\text{-Fe}_2O_3(102)$ films without $CoFe_2O_4$ layers clearly showed the spin-flip transition at about 400 K. The spin axis lay within the (102) plane of $\alpha\text{-Fe}_2O_3$ at high temperatures but became almost normal to the plane at low temperatures. However the $\alpha\text{-Fe}_2O_3(102)$ layers covered by $CoFe_2O_4$ layers did not show any spin-flip transition. The spin axis of the $\alpha\text{-Fe}_2O_3(102)$ base layers was fixed on the perpendicular to the films. Magnetic hysteresis loops of $CoFe_2O_4/\alpha\text{-Fe}_2O_3$ bilayered films indicated that a large in-plane magnetic anisotropy and an exchange bias field were induced in the films. The 90° coupling at the interface between ferrimagnetic and antiferromagnetic materials was directly observed in the $CoFe_2O_4/\alpha\text{-Fe}_2O_3$ system fabricated entirely of oxides.

ACKNOWLEDGEMENT

This work was financially supported by grant-in-aid from Ministry of Education, Culture, Sports, Science and Technology, Japan

REFERENCES

- 1. N. C. Koon, Phys. Rev. Lett., 78, 4865 (1997).
- 2. N. Hasegawa, A. Makino, F. Koike, K. Igarashi, IEEE. Trans, Magn., 32, 4618(1996).
- H. Sakakima, Y. Sugita, M. Satomi, Y. Kawawake, J. Magn. Magn. Mat., 198-199, 9 (1999).
- 4. T. Fujii, M. Takano, R. Katano, Y. Isozumi, Y. Bando, J. Magn. Magn. Mat., 135, 231 (1994).
- P. J. van der Zaag, A. R. Ball, L. F. Feiner, and R. M. Wolf, P. A. A. van der Heijden, J. Appl. Phys., 79, 5103 (1996).
- 6. T. Fujii, T. Yano, M. Nakanishi, J. Takada, in *Proceedings of the 8th International Conference on Ferrites* (Kyoto, 2000) in press.
- 7. X. Wang, H. Matsumoto, Y. Someno, T. Hirai, Appl. Phys. Lett., 72, 3264 (1998).
- 8. JCPDS, Powder Diffraction File, 22-1086.
- 9. J. Smit, H.P.J. Wijn, *Ferrites*, Philips Technical Library, Eindhoven, the Netherlands, 1959, p.162.